A GENERAL EXISTENCE PROOF FOR NON-LINEAR ELLIPTIC EQUATIONS IN SEMI-RIEMANNIAN SPACES By CLAUS GERHARDT

نویسنده

  • CLAUS GERHARDT
چکیده

We present a general existence proof for a wide class of non-linear elliptic equations which can be applied to problems with barrier conditions without specifying any assumptions guaranteeing the uniqueness or local uniqueness of particular solutions. As an application we prove the existence of closed hypersurfaces with curvature prescribed in the tangent bundle of an ambient Riemannian manifold N without supposing any sign condition on the sectional curvatures KN . A curvature flow wouldn’t work in this situation, neither the method of successive approximation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A General Existence Proof for Non-linear Elliptic Equations in Semi-riemannian Spaces

We present a general existence proof for a wide class of non-linear elliptic equations which can be applied to problems with barrier conditions without specifying any assumptions guaranteeing the uniqueness or local uniqueness of particular solutions. As an application we prove the existence of closed hypersurfaces with curvature prescribed in the tangent bundle of an ambient Riemannian manifol...

متن کامل

Closed Weingarten Hypersurfaces in Semi-riemannian Manifolds

The existence of closed hypersurfaces of prescribed curvature in semi-riemannian manifolds is proved provided there are barriers.

متن کامل

Curvature Flows in Semi-riemannian Manifolds

We prove that the limit hypersurfaces of converging curvature flows are stable, if the initial velocity has a weak sign, and give a survey of the existence and regularity results.

متن کامل

Proof of a decomposition theorem for symmetric tensors on spaces with constant curvature

In cosmological perturbation theory a first major step consists in the decomposition of the various perturbation amplitudes into scalar, vector and tensor perturbations, which mutually decouple. In performing this decomposition one uses – beside the Hodge decomposition for one-forms – an analogous decomposition of symmetric tensor fields of second rank on Riemannian manifolds with constant curv...

متن کامل

Existence of solutions for discontinuous functional equations and elliptic boundary-value problems

We prove existence results for discontinuous functional equations in general L-spaces and apply these results to the solvability of implicit and explicit elliptic boundary-value problems involving discontinuous nonlinearities. The main tool in the proof is a fixed point result in lattice-ordered Banach spaces proved by the second author.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009